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A series of laboratory experiments and numerical simulations have been performed
to investigate the rapid fluid-like flow of a finite mass of granular material down a
chute with partial lateral confinement. The chute consists of a section inclined at 40◦
to the horizontal, which is connected to a plane run-out zone by a smooth transition.
The flow is confined on the inclined section by a shallow parabolic cross-slope profile.
Photogrammetric techniques have been used to determine the position of the evolving
boundary during the flow, and the free-surface height of the stationary granular
deposit in the run-out zone. The results of three experiments with different granular
materials are presented and shown to be in very good agreement with numerical
simulations based on the Savage–Hutter theory for granular avalanches. The basal
topography over which the avalanche flows has a strong channelizing effect on the
inclined section of the chute. As the avalanche reaches the run-out zone, where the
lateral confinement ceases, the head spreads out to give the avalanche a characteristic
‘tadpole’ shape. Sharp gradients in the avalanche thickness and velocity began to
develop at the interface between the nose and tail of the avalanche as it came to rest,
indicating that a shock wave develops close to the end of the experiments.

1. Introduction
Snow slab avalanches, landslides and rock falls are extremely dangerous and

destructive natural phenomena, whose frequency and amplitude appears to have
increased during the past two decades. A reliable method of predicting avalanche paths
and maximum run-out distances is therefore of considerable interest to civil engineers
responsible for planning and development in populated mountainous regions. The
Savage–Hutter (1989, 1991) theory for the gravity-driven, free-surface flow of a finite
mass of granular material over a rough inclined base has been established as the
leading model for this purpose.

The theory was originally formulated (Savage & Hutter 1989) for an incompressible
granular avalanche flowing down an inclined plane. The balance equations were
formulated for two-dimensional plane deformations, and subsequently reduced by
the shallowness approximation to obtain a one-dimensional theory by integrating
through the avalanche depth. The effects of basal friction were parameterized by a
Coulomb-type rate-independent dry friction law with basal angle of friction, δ, and
the downslope avalanche velocity was assumed to be independent of depth. This
theory was found to be in excellent agreement with laboratory experiments (Savage
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Figure 1. The simple curvilinear coordinate system Oxyz consists of an inclined plane connected
to a horizontal plane by a smooth transition. The local inclination angle of the curvilinear surface
z = 0 (dashed lines) is ζ. The actual basal topography z = b(x, y) (solid lines) is superposed on the
z = 0 curvilinear surface.

& Hutter 1989; Hutter & Koch 1991; Greve & Hutter 1993). A two-dimensional
generalization of the theory for planar topographies (Hutter et al. 1993; Greve, Koch
& Hutter 1994) has also yielded very good results (Koch, Greve & Hutter 1994).

The Savage–Hutter theory has recently been extended (Gray, Wieland & Hutter
1999) to model the flow of granular avalanches over a wide range of shallow three-
dimensional topographies. The resulting depth-integrated (two-dimensional) theory
allows the motion of granular avalanches to be modelled from initiation to run-out
on most naturally occurring slopes and hence provides a method of predicting terrain
specific information for avalanche risk assessment. To test this theory three laboratory
experiments are performed on a chute with partial lateral confinement, and the results
are compared to numerical simulations.

2. Governing equations
The two-dimensional depth-integrated equations used in this paper were de-

rived by Gray et al. (1999). A reference surface that follows the mean down-
slope bed topography is used to define a plane orthogonal curvilinear coordinate
system, Oxyz. The z-axis is normal to the reference surface and the x- and y-
coordinates are tangential to it, with the x-axis oriented downslope. The downs-
lope inclination angle ζ is used to define the reference surface as a function
of the downslope coordinate x. The reference surface does not vary as a func-
tion of the cross-slope coordinate y. The chute geometry is superposed by defin-
ing its height z = b(x, y) above the reference surface, z = 0, as illustrated in
figure 1. For notational simplicity components in the x-direction are referred to
as downslope and components in the y-direction as cross-slope, even though the local
downslope direction of the basal topography may not coincide with the direction of
the x-coordinate.

The depth-integrated mass balance equation for an incompressible material together
with the kinematic boundary conditions at the free surface and base of the avalanche
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yield a continuity equation for the avalanche thickness h

dh

dt
+ h

(
∂u

∂x
+
∂v

∂y

)
= 0, (2.1)

where v = (u, v) is the depth-averaged surface-parallel velocity with components u, v
in the down- and cross-slope directions, respectively. The two-dimensional advective
derivative d/dt = ∂/∂t+ u∂/∂x+ v∂/∂y. The momentum balance equations reduce to

du

dt
= sin ζ − u

|v| tan δ(cos ζ + λκu2)− ε cos ζ

(
Kx

∂h

∂x
+
∂b

∂x

)
, (2.2)

dv

dt
= − v

|v| tan δ(cos ζ + λκu2)− ε cos ζ

(
Ky

∂h

∂y
+
∂b

∂y

)
, (2.3)

where δ is the bed friction angle and κ = −∂ζ/∂x is the local curvature of the
reference surface. The Earth pressure coefficients Kx and Ky are equal to the ratio of
the in-plane to vertical pressure in the down- and cross-slope directions, respectively.
That is, Kx = pxx/pzz and Ky = pyy/pzz . The conservation equations (2.1)–(2.3) are
presented in non-dimensional form. The non-dimensional variables, h, b, x, y, u, v
and κ, can be mapped back to their physical counterparts, h̃, b̃, x̃, ỹ, ũ, ṽ and κ̃, by
applying the scalings

(x̃, ỹ) = L(x, y), (h̃, b̃) = H(h, b), t̃=
√
L/gt, κ̃=κ/R, (ũ, ṽ)=

√
gL(u, v), (2.4)

where g is the constant of gravitational acceleration,H is a typical avalanche thickness,
L is a typical length and R is a typical radius of curvature of the chute in the
downslope direction. The Savage–Hutter theory assumes that both the aspect ratio
of the avalanche ε = H/L and the characteristic curvature of the chute λ = L/R,
arising in equation (2.2) and (2.3), are small.

A key feature of the Savage–Hutter (1989) theory was the derivation of an ex-
pression for the downslope Earth pressure coefficient Kx, based on a Mohr–Coulomb
constitutive relation for the granular nature of the material. Hutter et al. (1993) gen-
eralized this for the two-dimensional depth-integrated case to yield limiting values for
both Kx and Ky in dilatation and compression. These relations are valid only when the
motion is chiefly downhill and the shearing in the (x, y)-plane is small in comparison
with the shearing in the (x, z)- and (y, z)-planes. When the sidewise motion is large or
when there is strong lateral confinement between rough walls these assumptions, of
course, break down. However, in the experiments and simulations performed in this
paper the chute has shallow lateral curvature, so the sidewise confinement is small,
and the predominant motion is downslope. The Earth pressure coefficient relations
derived by Hutter et al. (1993) are therefore assumed here.

The coefficients Kx and Ky are piecewise constant and are described as being active,
or passive, dependent on whether the motion is dilatational, or compressional

Kx =

{
Kxact , ∂u/∂x > 0
Kxpas , ∂u/∂x < 0,

(2.5)

and

Ky =


Kxact
yact
, ∂u/∂x > 0, ∂v/∂y > 0

Kxact
ypas
, ∂u/∂x > 0, ∂v/∂y < 0

K
xpas
yact , ∂u/∂x < 0, ∂v/∂y > 0

K
xpas
ypas , ∂u/∂x < 0, ∂v/∂y < 0.

(2.6)
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Their values are given by

Kxact/pas = 2 sec2 φ
(

1∓√1− cos2 φ sec2 δ
)
−1, (2.7)

Kx
yact/pas

= 1
2

(
Kx + 1∓√(Kx − 1)2 + 4 tan2 δ

)
, (2.8)

where φ is the internal angle of friction of the granular material. The approximation
that the downslope motion dominates over most of the avalanche track destroys the
rotational invariance of the Earth pressure coefficients, but yields a relatively simple
system of equations that is favoured at this stage. The magnitude of these terms plays
an important role in the development of the avalanche shape, as they control how
much spreading and contraction occur.

3. Experimental setup
The laboratory experiments were performed on a specially constructed chute. The

reference surface consists of a plane inclined at 40◦ to the horizontal, which is
connected to a horizontal run-out zone by a curved transition region. The three-
dimensional basal topography over which the avalanche flows is then superposed
normal to the reference surface. Prior to release the granular material fills a Perspex
cap that sits flush with the parabolic cross-slope topography. The avalanche is initiated
by rapidly raising the cap and it is then accelerated by the component of gravity
acting in the downslope direction. When the avalanche enters the run-out zone its
energy is rapidly dissipated by the basal friction and it quickly comes to rest. Typical
run times are of the order of 1–2 s with travel distances of up to 4 m. A series of
photographs from a typical experiment is shown in figure 2.

3.1. Slope-fitted curvilinear coordinates

The reference surface is defined by the variation of its inclination angle, ζ, with the
downslope coordinate x. A relatively simple set of reference coordinates is used in the
simulations, which reflects the mean downslope inclination angle of the experimental
chute

ζ =

 ζ0, x < xa
ζ0(xb − x)/(xb − xa), xa 6 x 6 xb
0, xb < x,

(3.1)

where ζ0 = 40◦. The origin is placed close to the release point and the beginning of the
transition zone (and end of the parabolic chute) lies at x̃a = 175 cm, whilst the end of
the transition region (and beginning of the horizontal flat plane) lies at x̃b = 215 cm.
The mapping from the curvilinear system back to rectangular coordinates is given in
Appendix A.

3.2. Superposed basal topography

A shallow parabolic cross-slope profile, with radius of curvature R̃ = 110 cm is
prescribed on the inclined section of the the chute, x < xa. This opens out into a
flat run-out zone in the region, x > xb, and in the transition zone, xa 6 x 6 xb, a
continuous differentiable function is constructed to provide a smooth change in the
topography. The parabolic section and the flat run-out plane are both constructed
from sheet steel and the transition is built from wood and fine modelling plaster. The
entire chute was then sprayed with paint to give it a smooth finish with an even bed
friction angle.
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Figure 2. An experimental image sequence from experiment V05 showing the deformation of the
avalanche at approximately 1/4 s time intervals. The granular material flows downhill from left
to right. The parabolic chute lies is on the left-hand and the horizontal run-out plane is on the
right-hand side of each picture. The image sequence begins in the top left-hand panel and ends
in the bottom right, going from top to bottom, and the large hand of the clock performs one
revolution every second.
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Figure 3. A cross-slope section through the centre of the spherical cap that is used to generate
the initial free surface of the granular material. The chute has a shallow parabolic cross-slope
profile with radius of curvature R, whilst the spherical cap has radius r and maximum height
hc above the basal topography. If R → ∞ the edge of the avalanche domain is circular with
radius rb.

The functional form of the chute topography, b, is

b =


y2

2R
, x < xa

y2

2R

{
3

(
x− xb
xa − xb

)2

− 2

(
x− xb
xa − xb

)3
}
, xa 6 x 6 xb

0, xb < x.

(3.2)

In the channel section (x < xa) of the chute the basal topography is a function of
y only, whilst in the transition zone (xa 6 x 6 xb) the basal topography is a function
of both x and y. In the run-out zone (x > xb) the basal topography is independent
of both x and y.

3.3. Initial conditions

The granular material is released from a hemi-spherical Perspex cap at the top of the
chute, which is fitted to the parabolic cross-slope basal topography. The initial free
surface, s, of the granular material is

s(x, y, 0) = (r2 − x2 − y2)1/2 − (r − hc), (3.3)

where r is the radius of the sphere and hc is the maximum height of the free surface
above the chute. The basal topography in the channel section of the chute is given by
(3.2), and the avalanche boundary lies at the intersection of the surfaces s and b, as
shown in figure 3. With shallow lateral curvature 1/R̃ � 1 it is easy to show that the
projection of the avalanche edge onto the (z = 0)-plane is approximately elliptical in
shape, with downslope major axis, rb, and cross-slope minor axis, rb(1−(r−hc)/(2R)) =

ymax. The major axis of the cap r̃b = 32 cm, and the maximum height, h̃c = 22 cm,
occurs at the centre of the cap; which is positioned at x̃ = 6 and ỹ = 0 cm. The cap
is mounted on a metal frame that is pivoted at the top of the chute. The avalanche is
released manually by pulling a rope attached to the cap; this raises it rapidly upwards
and away from the direction of the avalanche flow about a pivot point. The physical
lengths of the chute and the cap geometry are summarized in table 1.

In the experiments the granular material is released from rest; however, this causes
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Variable Symbol Value

Radius of curvature R 11 (110 cm)
Angle of inclination ζ0 40◦
End of parabolic section xa 17.5 (175 cm)
Beginning of flat section xb 21.5 (215 cm)
Major axis of cap rb 3.2 (32 cm)
Cap height hc 2.2 (22 cm)
x-position of the cap centre x0 0.6 (6 cm)
y-position of the cap centre y0 0.0 (0 cm)
Non-dimensional time step ∆t 0.01
Downslope diffusion coefficient µx 0.5
Cross-slope diffusion coefficient µy 0.1
Number of points I 331
Number of elements J 600

Table 1. The non-dimensional chute geometry and the initial conditions for the granular material
are summarized, along with the numerical parameters used in the simulations. Equivalent physical
lengths are indicated in brackets.

problems in the theory, because the term v/|v| is undefined in the Coulomb basal
friction law when v = 0. This was present in the original Savage & Hutter (1989)
theory, and there is no simple way to completely eliminate it. In the calculations in
this paper it is simply assumed that v/|v| = 0 when v = 0. That is, it is assumed that
there is no basal friction when the avalanche is at rest.

3.4. Photogrammetric measurements

A Canon F1 high-speed camera was used to follow the dynamic evolution of the
avalanche boundary during each experiment. Typically 10 frames per second were
taken with an exposure time of 1/1000 s to minimize blurring of the avalanche.
Single image photogrammetric techniques (e.g. Kraus 1982) were used to determine
the position of the edge of the flowing avalanche. Although the position of the
avalanche edge does not lie in a plane, the shallowness of the superposed geometry
allows its position to be determined to within ±1 cm.

Stereo photography allows the three-dimensional position of a point to be recon-
structed from two pictures taken from different locations (e.g. Buchholz & Rüger
1972; Kraus 1982) and at the same instant in time if the object is moving. For the
final avalanche deposit the granular material is at rest and the images do not have
to be taken simultaneously. A Technical Measurement Camera (TMK 21) belonging
to the Institute for Photogrammetry of the Technische Universität in Darmstadt was
used to obtain two image pairs. This middle format camera (9 × 13 cm negatives) is
specifically designed for surveying purposes and has a built-in Reseau plate to correct
for uneveness of the film. A basis of approximately 1.2 m between the camera positions
was used. This yields an excellent three-dimensional image of the avalanche when
the image pairs are viewed through a stereoscope. The photographs were evaluated
on the AC3 analytical stereo-evaluation device at the Institute of Photogrammetry
and used to determine the free-surface height of the stationary deposit of granular
material.
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Figure 4. The dimensionless displacement and deformations of a ten-ring numerical grid used to
simulate the avalanche experiment V05 (vestolen). The image sequence is shown at the same times
as those in figures 5 and 7. The vertical dashed lines at x = 17.5 and x = 21.5 indicate the beginning
and end of the transition zone, with the 40◦ inclined channel to the left and the horizontal run-out
plane to the right.

4. Numerical method
An explicit in time, spatially two-dimensional, Lagrangian, mixed finite-volume

finite-difference scheme is used to solve the depth-integrated equations (2.1)–(2.3).
The avalanche is discretized into a finite number of triangular elements, which
form a grid that moves and deforms with the motion of the avalanche as figure 4
illustrates. The set of points used to generate this grid reflects the initial experimental
configuration of the avalanche, which is approximately elliptical in shape. Details of
the discretization process are given in Appendix B.

Assuming that the position, thickness and velocity at the grid nodes are known at
time step k − 1, as well as the initial volume of material in each triangular cell, the
numerical algorithm is as follows.
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(i) The new positions of the element corners, i, are computed by integrating
equations dx/dt = u and dy/dt = v explicitly forward from time step k − 1 to k:

xki = xk−1
i + ∆t u

k−1/2
i , yki = yk−1

i + ∆t v
k−1/2
i , (4.1)

where ∆t is the length of the time step.
(ii) The area, Akj , of the triangular elements, j, at time step k is computed by

forming the scalar triple product

Akj = 1
2
| k·[(pkβj − pkαj )∧(pkγj − pkαj )]|, (4.2)

where pαj , pβj , pγj are the position vectors of the three neighbouring points to
triangular element j, and k is the unit normal to the curvilinear coordinate plane.

(iii) The volume in each material region of the avalanche is conserved (see Appendix
C). In particular it is conserved in each triangular element of the avalanche, so its
current volume, Vk

j , is equal to V 0
j , the initial volume. It follows that the current

thickness

hkj = V 0
j /A

k
j , (4.3)

is given by dividing the initial volume by the current area of the the triangular
element.

(iv) The new velocity components are then computed by an explicit forward step
in time

u
k+1/2
i = u

k−1/2
i + ∆t (du/dt)

k−1/2
i , (4.4)

v
k+1/2
i = v

k−1/2
i + ∆t (dv/dt)

k−1/2
i , (4.5)

where the acceleration terms are(
du

dt

)k−1/2

i

= sin ζki − (u
k−1/2
i /|vk−1/2

i |) tan δki (cos ζki + λκki (u
k−1/2
i )2)

−ε cos ζki

(
(Kx)

k
i

(
∂s

∂x

)k
i

+
(
1− (Kx)

k
i

)(∂b
∂x

)k
i

)
+ (Ψx)

k
i , (4.6)

(
dv

dt

)k−1/2

i

= −(u
k−1/2
i /|vk−1/2

i |) tan δki (cos ζki + λκki (u
k−1/2
i )2)

−ε cos ζki

(
(Ky)

k
i

(
∂s

∂y

)k
i

+
(

1− (Ky)
k
i

)(∂b
∂y

)k
i

)
+ (Ψy)

k
i . (4.7)

The variables ζki , δ
k
i , κ

k
i , (Kx)

k
i and (Ky)

k
i are the inclination angle, the basal friction

angle, the curvature, and down-slope and cross slope Earth pressures, respectively,
at time step k and point i. The active and passive states are computed from an
algorithm given in Appendix D. The thickness gradients have been rewritten using
the identity h = s− b, where s is the height of the free surface and b is the height of
the basal topography above the (z = 0)-plane. The discretization of the free-surface
gradients (∂s/∂x)ki and (∂s/∂y)ki at time step k and point i is discussed in Appendix
E. The gradients of the basal topography (∂b/∂x)ki and (∂b/∂y)ki are given explicitly
from the prescribed basal geometry. Finally, the terms (Ψx)

k
i and (Ψy)

k
i represent the

contribution from artificial viscosity (see Appendix F), which is introduced to diffuse
sharp gradients in both the avalanche velocity and thickness when shocks develop
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close to the end of the simulation. This is discussed further in the next Section, but
it should be noted that the algorithm is stable provided shocks do not develop.

(v) In the last step the position, thickness and velocity components are updated
and the iteration starts with these values from step (i).

The algorithm can be started from rest given an initial thickness distribution h0
j

and initial grid point positions (x0
i , y

0
i ). This requires the loop to start at position

(iv) with an explicit time step of length ∆t/2 to advance the velocity v0
i = 0 to v

1/2
i .

Alternatively, the algorithm can start at position (i) by prescribing an initial velocity

field v
−1/2
i .

The Lagrangian numerical grid deforms and moves with the avalanche as shown in
a typical evolution of the numerical grid in figure 4. Initially the grid is approximately
elliptical in shape with the major axis oriented in the downslope direction. As the
avalanche flows downhill it stretches out and the triangular grid cells gradually
become obtuse. This can reduce the accuracy of the derivative approximations if the
angles become too large. For the simulations presented in this paper the error is
small. However, on longer chutes where the uniaxial extension is more prolonged it
may be necessary to compute a new grid whenever the triangular elements become
too obtuse. As the avalanche passes through the transition zone onto the horizontal
run-out plane it compresses in the downslope direction and spreads out laterally.
It follows that the triangular elements once again become acute angled in the final
configuration of the numerical grid.

5. Comparison of experiments with theoretical predictions
In this section the measurements from three laboratory experiments are presented

and compared with the results of numerical simulations. The system of equations
(2.1)–(2.3) contain two non-dimensional parameters, ε and λ, associated with the
geometry of the avalanching material and the chute. Provided the geometry is similar
these equations predict the same avalanche flow irrespective of whether it is in a small-
scale laboratory experiment or in a large-scale mountain environment. The results
of both the experiments and the numerical computations are therefore presented in
non-dimensional variables to achieve as much generality as possible. The appropriate
physical variables for a particular application can then be constructed by applying
the scaling (2.4). A non-dimensionalization is chosen in which the length scale in the
x, y-directions is the same as in the z-direction. That is, L = 10 cm, H = 10 cm and
R = 10 cm giving ε = H/L = 1 and λ = L/R = 1. This scaling makes it easier to
interpret the results as the aspect ratio of the physical avalanche is preserved. The
physical and non-dimensional geometry of the chute is summarized in table 1.

Two material parameters are required by the theory, the bed friction angle, δ, and
the internal angle of friction, φ. Hutter & Koch (1991) showed that the avalanche
motion is relatively insensitive to changes in the internal angle of friction. It is
therefore not essential to measure it to a high degree of accuracy and it is simply
assumed that it is equal to the angle of repose of a conical pile of the granular
material built up on a horizontal frictional plane. Measuring the bed friction angle
is more difficult. Experiments suggest that there is a range of bed friction angles,
which may differ by up to 4◦ (Hungr & Morgenstern 1984a,b), depending on whether
the motion is static or dynamic. Savage & Hutter (1989) and Greve & Hutter (1993)
measured the static δ by tilting a planar section of the bed topography and measuring
the angle at which a stationary sample of the granular material began to slide. In their
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simulations they used a dynamic bed friction angle, which they computed by reducing
the measured static angle by 4◦ following Hungr & Morgenstern (1984a,b). Very good
agreement between theory and experiment was obtained in both one-dimensional and
unconfined two-dimensional cases by using this value.

The physical mechanisms responsible for the 10–15% difference between static and
dynamic bed friction angles are not well understood. However, the dilatant nature
of granular materials when sheared (Reynolds 1885) and the granular temperature
induced by inter-particle collisions in rapid flows (Jenkins & Savage 1983) are prob-
ably the prime mechanisms. The predictive capability of the Savage–Hutter model is
of course reduced by the deviations from the Coulomb basal dry friction law. For
practical purposes, however, a simple parameter study using different values of δ is
enough to provide upper and lower bounds for the avalanche motion that are suffi-
ciently close together to be of great practical use in hazard forecasting. In future our
understanding of the tribology of the rapidly moving and evolving interface between
the base of the avalanche and the chute is likely to advance considerably, and, when
more accurate basal friction laws become available they can easily be incorporated
into the structure of the Savage–Hutter theory.

In the experiments presented in this paper it was found that at the avalanche front,
where high velocities are attained, the grains enter into a rapid collisional flow regime
(Jenkins & Savage 1983) that fluidizes the basal layer. It is postulated that this can
reduce the basal friction and it therefore is a plausible explanation for long run-out
distances attained by very large-mass avalanches. However, in our experiments the
grains in the collisional regime experienced more basal drag than those which flow
more slowly. Thus, when a constant dynamic bed friction angle δ0 was used to
simulate the flow it was always found that the front was modelled well but the tail
moved too slowly. In order to quantify this effect a variable bed friction angle has
been introduced that is linearly reduced from the dynamic value of the front in the
rear three-quarters of the avalanche:

δ =

{
δ0, x > xf − (xf − xr)/4
δ0 − mδ(xf − (xf − xr)/4− x), x < xf − (xf − xr)/4. (5.1)

where mδ = 1 is the bed friction reduction factor and, xf and xr are the position of
the front and rear of the avalanche, respectively. Gray et al. (1999) have presented a
comparison of the numerical simulations with and without this bed friction reduction
to show the effect that (5.1) has on the computations. All our experiment simulations
were in very good agreement with measurements when the same law was used.
While (5.1) is only an empirical relation there are a number of competing physical
mechanisms that may be responsible for it. The rapid collisional flow regime can
fluidize the particles near the chute topography and introduce a rate dependence that
can either increase or decrease the drag depending on the mass of the avalanche.
Topographical effects may add to this as well as lubrication and damage effects on
the chute itself. A considerable research effort is required before such physical effects
can be properly measured and quantitatively understood. Only then will it be possible
to fully explain the final 10–15% difference in the dynamic and static bed friction
angles.

5.1. Experiment V05: Vestolen plastic beads

Experiment V05 was performed with rounded plastic beads (Vestolen) with a mean
diameter of 2–3.5 mm, basal angle of friction δ = 27◦ and internal angle of friction
φ = 33◦. A sequence of photographs showing the evolution of the avalanche in the
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Figure 5. A comparison between the dimensionless actual avalanche (solid) boundary in experiment
V05 (vestolen) and the computed (dashed) edge is plotted at a sequence of time steps in projected
curvilinear coordinates (x, y). The vertical dashed lines at x = 17.5 and x = 21.5 indicate the position
of the transition zone, with the 40◦ inclined channel to the left and the horizontal run-out plane
to the right. In the bottom right panel the thickness distribution of the experimental avalanche is
illustrated using 0.1 unit contours.

experiment is shown in figure 2. This evolution is typical of all three experiments
described in this paper. The granular material is released from the cap on the inclined
section of the chute and rapidly spreads out in the downhill direction, so that when
the avalanche front reaches the run-out plane the tail has barely moved from its initial
position. As the avalanche flows through the transition zone the lateral confinement
ceases and the granular material spreads out laterally. This produces a very strong
nose and tail structure, in which the nose is spreading and the tail is being channelized
by the topography.

A single-image photogrammetric method has been used to extract the position of
the avalanche boundary from a series of these photographs. A comparison of the
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Figure 6. An image pair of the final avalanche deposit on the horizontal run-out plane in experiment
V05. The transition zone and parabolic section of the chute is along the top edge of the pictures
and the downslope direction is from top to bottom. A three-dimensional image of the avalanche
can be seen with the use of a stereoscope. It is also possible to view the three-dimensional image
without the use of a stereoscope after some practice. The trick is to hold the page at arms length
and focus in the far distance, so that one sees double. By varying the distance of the page from the
eye it is then possible to overlap the left and right images so that the brain can interpret it in three
dimensions.

measured (solid) and computed (dotted) boundary for a sequence of time steps is
illustrated in figure 5. In each panel the downslope curvilinear coordinate runs along
the x-axis and the cross-slope coordinate lies along the y-axis. The symmetry line of
the parabolic channel runs along the line y = 0; this also represents the set of points
with the minimum height above the curvilinear surface z = 0, or the Talweg. The fine
dotted lines indicate the end of the parabolic channel at xa = 17.5 and the beginning
of the plane horizontal section of the chute at xb = 21.5.

In the final panel of figure 5, isolines of the measured thickness are plotted using
equally spaced contour intervals of 0.1 non-dimensional units (1 cm physical) above
the edge, where the height is zero. These contours were determined by a stereo
photogrammetric method from the two photographs in figure 6. In figure 7 the
computed thickness is illustrated at the same time steps as in figure 5, and the bottom
right panel shows a comparison with the final experimental thickness distribution.

The dominant deformation in the parabolic channel is due to downslope stretching
of the avalanche, in which the front section moves much faster than the rear. In
response to this deformation field the thickness of the avalanche is reduced throughout
the avalanche. At t = 5.1 the maximum value lies between 0.8–0.9 compared with
the initial value hc = 2.2. The tendency for the avalanche to spread in the cross-slope
direction in response to the Earth pressure terms, observed on plane slopes (Koch et
al. 1994; Gray et al. 1999) is not observed here. Instead the channelizing effect of the
parabolic basal topography is almost in exact balance with the cross-slope spreading
effect of the Earth pressure terms. Initially there is a small cross-slope divergence
of the avalanche while the thickness gradient, ∂h/∂y, is relatively large, but as the
thickness decreases due to the downslope stretching the lateral gradients decrease and
the channelizing effect of the topography, ∂b/∂y, dominates. The general position and
shape of the experimental and computed avalanche agree extremely well. In particular
the front of the computed avalanche is in almost exact agreement with the experiment.
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Figure 7. The computed dimensionless avalanche thickness for experiment V05 (vestolen) is illus-
trated at the same times as in figure 5, using 0.1 unit contour intervals. The bottom right panel
shows the final experimental thickness distribution, which agrees very well with that predicted
(immediately above).

As the front, or nose, of the avalanche reaches the run-out plane, at t = 9.1,
it decelerates rapidly as the gravity forcing ceases and the basal friction dissipates
the accumulated energy. The avalanche spans all three sections of the chute. In the
channel section the tail of the avalanche continues to stretch in the downslope direction
reducing in thickness correspondingly. However, in the transition zone (xa 6 x 6 xb)
the avalanche is dominated by downslope convergence, which increases the thickness.
On the horizontal plane the partial confinement of the concave parabolic section
ceases and there is cross-slope motion of the avalanche.

The avalanche develops a ‘tadpole’ like nose-and-tail structure at t = 15.2, which
is characteristic of all the experiments performed on this chute. This shape is due
to the change from parabolic lateral confinement on the chute to unconfined flow
on the run-out plane. In the nose, where the avalanche has almost come to rest,
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Figure 8. A comparison between the dimensionless actual avalanche (solid) boundary in experiment
V04 (marble) and the computed (dashed) edge is plotted for a sequence of time steps in projected
curvilinear coordinates (x, y). In the bottom right panel the thickness distribution of the experimental
avalanche is illustrated using 0.1 unit contours.



88 M. Wieland, J. M. N. T. Gray and K. Hutter

Figure 9. An image pair of the final avalanche deposit on the horizontal run-out plane in experiment
V04. The transition zone and parabolic section of the chute is along the top edge of the pictures
and the downslope direction is from top to bottom. A three-dimensional image of the avalanche
can be seen with the use of a stereoscope or the trick described in figure 6.

the agreement is excellent. However, in the tail section, which is still being forced
by the gravitational acceleration, the avalanche is channelized somewhat more than
predicted. At the interface between the nose and the tail very sharp gradients in
thickness and velocity develop as shown in figure 9 at t = 15.2. This is in fact a
granular shock wave (Gray & Hutter 1997, 1998), which propagates upslope. The
granular material flowing in the tail has typical physical velocities of 1–2 m s−1 and
as it passes through the shock wave it increases in thickness and comes to rest. The
formation and propagation of this shock wave in the final three non-dimensional
time units presents significant difficulties for the numerical method as it is not shock
capturing. In the experiments in this paper only weak diffuse shocks develop and
reasonable simulations can be performed by introducing some artificial numerical
viscosity into the momentum equations (4.6) and (4.7). These are only turned on after
the tenth non-dimensional time unit.

The computed avalanche comes to rest at t = 17.2, whilst the last particles come
to rest at t = 18.2 in the experiment. This difference is due to a very thin slow
moving tail that can be seen in the penultimate panel of figure 5. This thin tail is not
resolved in the numerical simulation. The position and thickness of the computed and
experimental granular deposits are easily compared in the last two panels of figure 9.
The computed position of the boundary, the maximum thickness and the position of
the maximum thickness are all in excellent agreement.

5.2. Experiment V04: Marble chips

In experiment V04 marble chips with a mean diameter of 2–4 mm were used. These
have quite a pointed geometry and their surface is considerably rougher than the
plastic beads. As a result there is considerably more interparticle and basal friction,
which is reflected in the higher internal, φ = 43◦, and basal, δ = 33◦, friction angles.

In a point-mass model, in which the thickness gradients are ignored, the dominant
balance in the downslope momentum balance (2.2) is between the acceleration, gravity
and basal drag. It follows that on the inclined section of the chute the downslope
acceleration is proportional to sin ζ0 − cos ζ0 tan δ. An increase in the bed friction
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Figure 10. The computed dimensionless avalanche thickness for experiment V04 (marble) is illus-
trated at the same times as in figure 8, using 0.1 unit contour intervals. The final experimental
thickness distribution is shown bottom right.
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Figure 11. A comparison between the dimensionless actual avalanche (solid) boundary in experiment
V03 (quartz) and the computed (dashed) edge is plotted at a sequence of time steps in projected
curvilinear coordinates (x, y). In the bottom right panel the thickness distribution of the experimental
avalanche is illustrated using 0.1 unit contours.

angle therefore implies that the avalanche accelerates more slowly and reaches lower
velocities on the inclined section of the chute. Furthermore, on the horizontal plane,
where ζ = 0, the acceleration is proportional to − tan δ and the avalanche decelerates
more rapidly. It is therefore expected that the avalanche will not travel as far in
experiment V04 as in V05.

A comparison of the measured (solid) and computed (dashed) avalanche boundary
is illustrated for a sequence of time steps in figure 8. The overall evolution of the
shape and thickness distribution (figure 7) of the avalanche as it flows down the
chute is broadly the same as in experiment V05. However, there are a number of
important differences, which are due to the increased bed friction angle. As expected
the avalanche does not travel as far as in experiment V05. The position of the centre of
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Figure 12. An image pair of the final avalanche deposit on the horizontal run-out plane in
experiment V03. The transition zone and parabolic section of the chute is along the top edge of
the pictures and the downslope direction is from top to bottom. A three-dimensional image of the
avalanche can be seen with the use of a stereoscope or the trick described in figure 6.

mass and the maximum run-out distance are approximately 3 and 4 non-dimensional
units further upslope than in experiment V05, respectively. Furthermore, even though
the avalanche does not travel as far it takes nearly one non-dimensional time unit
longer to come to rest. This is also reflected in the velocity magnitudes which are
smaller than in experiment V05.

The fact that the avalanche does not run-out as far as V05 implies that much of the
material is brought to rest in the transition zone, where the the basal topography still
weakly accelerates the flow. The strength of the shock wave that forms at the interface
between the nose and tail is correspondingly larger. The evolution of steepening and
propagation of the diffuse shock can be seen very well in the thickness contours for
time steps t = 14.1, 14.8, 15.5 and 16.8 time units in figure 10. It forms at the front
of the transition zone and slowly propagates upslope and steepens as the material
flowing into it from the tail becomes thinner and thinner.

A balance between the Coulomb basal friction and the active pressure gradient
terms in (2.2) suggests that the steepest slope that can arise, max(∂h/∂x), in the
rest state is equal to tan δ/Kxact . In experiment V04 max(∂h/∂x) = 0.714, whereas in
experiment V05 it is 0.577, and the slope at the rear of the avalanche is therefore
considerably steeper with the contours packed tightly together. This is shown clearly
in the final thickness distribution in the computed and experimental avalanche in
figure 10, as well as in the stereo image pair in figure 9.

5.2.1. Experiment V03: Quartz1

Experiment V03 uses quartz chips of mean diameter of 4–5 mm. The internal angle
of friction φ = 39◦ and the bed friction angle δ = 28◦. The bed friction angle is
only one degree more than in experiment V05 so the point-mass speed of the two
avalanches are very close. The two granular materials have quite different internal
angles of friction and a comparison of experiments V03 and V05 allows the sensitivity
of the flow to changes in φ to be investigated.

The influence of φ enters through the Earth pressure coefficients defined in (2.7)
and (2.8). The value of the active Earth pressure coefficient determines the amount of
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Figure 13. The computed dimensionless avalanche thickness for experiment V03 (quartz) is illus-
trated at the same times as in figure 11, using 0.1 unit contour intervals. The final experimental
thickness distribution is shown bottom right.

spreading in the divergent phase of the avalanche motion and is relatively insensitive to
changes in φ. For experiment V03 Kxact = 0.74 whilst for experiment V05 Kxact = 0.88.
Both values are close to unity, which implies that the internal stresses are close to
isotropic. A direct comparison of the evolution of the avalanche boundary, in figures
11 and 5, and the avalanche thickness, in figures 13 and 7, shows that experiments
V03 and V05 are indeed very similar. A balance between the Coulomb basal friction
and the active pressure gradient terms in (2.2) once again suggests that maximum
inclination of the slopes at the back of the avalanche deposit are slightly larger in
experiment V03 than in experiment V05, which the image pairs figures 12 and 6
confirm.

The convergent (passive) state Kxpas is more sensitive to changes in the material
parameters. However, it is only activated for a relatively short period of time as the
avalanche passes through the transition zone onto the run-out plane, and therefore
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does not have a large influence on the position and shape of the final deposit. In
experiment V03 Kxpas = 3.88, which implies that the downslope normal stress is nearly
four times larger than the hydrostatic pressure, whereas in experiment V05 φ = 33◦
implies Kxpas = 2.80. The shocks at the back of the avalanche occur during rapid
maintained convergence and the value of Kxpas will have a significant effect on the
shock speed and the avalanche thickness and velocity jumps at such singular surfaces.

6. Conclusions
Three laboratory experiments were performed on a chute with complex topography,

which demonstrate very good agreement with numerical simulations using a three-
dimensional extension of the Savage–Hutter avalanche theory (Gray et al. 1999). The
experiments show that partial confinement of the avalanche, in the inclined parabolic
section of the chute, prevents lateral spreading and strongly channelizes the flow. As
the nose of the avalanche flows out onto the unconfined run-out plane it spreads
laterally, whilst the tail is still channelized. These topographic effects result in the
avalanche developing a tadpole-like shape during the latter stages of the motion.
The numerical simulations have been able to reproduce all these features. They
therefore provide a tool to predict the motion of avalanches over realistic site-specific
topography.

When the bed friction angle, δ, is increased the avalanche accelerates more slowly
and attains lower speeds on the inclined chute. It also comes to rest more rapidly
on the run-out plane. The maximum run-out distance is therefore decreased and the
overall position of the granular deposit is further upslope even though the avalanche
takes longer to come to rest. In all the experiments steep gradients in the avalanche
and thickness were observed when the granular material came to rest close to or in
the transition zone. The formation of the shocks caused significant problems for the
numerical method, which is not shock capturing. However, in these experiments the
shock was diffuse enough that the inclusion of some artificial viscosity was sufficient
to allow the computations to proceed until the avalanche came to rest.

This research was supported by the Deutsche Forschungsgemeinschaft through
the SFB 298 project “Deformation und Versagen bei metallischen und granularen
Strukturen”. We gratefully acknowledge the invaluable assistance of Dr R. Düppe
(Institut für Photogrammetrie at the Technische Hochschule Darmstadt) and the
help of H. Wall (Labor Mechanik) in constructing the chutes and performing the
experiments.

Appendix A. Mapping to rectangular coordinates
The curvilinear coordinates can be related to a Cartesian coordinate system O′XY Z

with basis vectors i, j , k along the X-, Y -, Z-axes, respectively. The Z-axis is assumed
parallel (but opposite in direction) to the gravitational acceleration and the Y -axis is
parallel to the y-axis. Given curvilinear unit basis vectors g1, g2, g3, along the x-, y-,
z-axes, respectively, these are related to the Cartesian basis vectors as follows

g∗1 = cos ζ i − sin ζ k,
g∗2 = j ,
g∗3 = sin ζ i + cos ζ k.

 (A 1)
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A position vector r can be decomposed into the sum

r = rr + z g∗3, (A 2)

where rr(x, y) is a position vector of a point on the curvilinear reference surface z = 0.
The Cartesian components of rr = Xri+Zrk are constructed by solving the integrals

Xr =

∫ x

0

cos ζ(x′) dx′, Zr = Z0 −
∫ x

0

sin ζ(x′) dx′, (A 3)

where Z0 is a constant of integration that allows the origins O and O′ to have different
Z positions. Substituting (3.1) into (A 3) the Cartesian components of the curvilinear
surface z = 0 are

Xr =

 x cos ζ0, x < xa
xa cos ζ0 − (xb − xa)(sin ζ − sin ζ0)/ζ0, xa 6 x 6 xb
xa cos ζ0 + (xb − xa)(sin ζ0)/ζ0 + (x− xb), xb < x,

(A 4)

Zr =

 (xa − x) sin ζ0 + (xb − xa)(1− cos ζ0)/ζ0, x < xa
(xb − xa)(1− cos ζ)/ζ0, xa 6 x 6 xb
0, xb < x.

(A 5)

Note that the curvilinear coordinate system defined above has a singularity at z =
(xb − xa)/ζ0 for all points (x, y, z) in the range xa 6 x 6 xb. This corresponds to the
points at which the lines of constant (x, y) intersect at the centre of the circle used
to generate the cylindrical transition zone. Provided the avalanche remains shallow
enough to avoid the singularity, this does not present a problem.

Appendix B. Discretization
The avalanche is discretized into a finite number of triangular elements, which

deform with the body. The initial configuration is elliptical in shape, with low
eccentricity. This allows the discretization to be performed for a circle and then
mapped back to the ellipse.

Consider a circular region B = {(x, y)| x2 + y2 6 r2
b x, y ∈ R} of radius rb. A set

of points P ⊆ B is constructed with a good resolution of the boundary ∂B and a
relatively even distribution of the elements in P . The set P is equal to P1 ∪ P2 where

P1 = {(x, y)|x = 0, y = 0}, (B 1)

P2 =

{
(x, y)|xij = i

rb

n
cos

(
2πj

mi

)
, yij = i

rb

n
sin

(
2πj

mi

)
,
i = 1, . . . , n

j = 1, . . . , mi

}
, (B 2)

for integers m, n with m > 3. The set P1 consists of a single point at the origin of
the circle. The set P2 is formed from a series of points on n evenly spaced concentric
rings centred on the origin. The first ring has m points whilst the outermost ring,
which coincides with the boundary of the circle, has mn points. For ease of notation
each point in P is given an index number belonging to the set L = {1, . . . , I}, where
I = 1 + mn(n+ 1)/2 is the total number of points in P = {pi = (xi, yi) i ∈ L}.

To select the optimal global triangulation of the set of points P a Voronoi Tiling
(e.g. Hoschek & Lasser 1992) is constructed in the (x, y)-plane. For a total number
of I points, I tiles Fi are constructed, which cover the entire (x, y)-plane. These are
defined by

Fi = {x ∈ R2| d(x, pi) 6 d(x, pj) ∀ i 6= j}, (B 3)
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Figure 14. The Voronoi tiling and Delaunnay triangulation of P is illustrated for the case m = 6
and n = 2. The thin solid lines show the position of the tiles Fi and the thick solid lines show the
position of the triangles Tj .

where d(x, pk) is the distance between position x and the point pk . The Voronoi tile
Fi consists of all the positions x ∈ R2 which are closer to point pi than all the other
points pj . A globally optimal Delaunnay Triangulation is then constructed by joining
all the points pi and pj , whose associated tiles Fi and Fj have a common edge, as
shown in figure 14 for the case m = 6, n = 2. The case m = 6 appears particularly
suitable for circular initial geometries, because the triangles naturally form hexagonal
groups which tessellate. All the computations presented in this paper have been
performed using m = 6 with ten rings (n = 10).

Each triangle is given an index number belonging to the set M = {1, ..., J}, where
J equals the total number of triangles in P . The set T = {T j = (αj, βj , γj) j ∈ M}
consists of J integer triplets (αj, βj , γj), which exactly define the triangulation of P .
To construct the finite differences, three sets of geometrical information are required
about the relative orientation of the points and the triangular elements:

N
p
i = {pαi , pβi , pγi , pδi , pεi , pζi} neighbouring points to point pi, i ∈ L;

Cj = {pαj , pβj , pγj} the corners of each triangle Tj , j ∈M;

Ne
i = {T αi ,T βi ,T γi ,T δi ,T εi ,T ζi} triangles surrounding each pi, i ∈ L.

The total number of triangles J = 2I − E − 2 and edges K = 3I − E − 3 in the
triangulation is uniquely determined by the total number of points I in P and the
number of edges E of the convex envelope. Each of these sets remains unchanged
throughout the numerical simulation.

Appendix C. Volume conservation
Provided that the thickness h is a smooth scalar field the continuity equation (2.1)

can be integrated over any fixed material region (or part) of the avalanche body Ω
by Reynolds’ Transport Theorem (e.g. Gurtin 1981), to give∫

Ω

{
dh

dt
+ h

(
∂u

∂x
+
∂v

∂y

)}
dx =

d

dt

∫
Ω

h dx. (C 1)
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The total volume of granular material VΩ in Ω is by definition

VΩ =

∫
Ω

h dx, (C 2)

and it follows from (2.1) and (C 1) that the total volume in any material region of the
avalanche body is conserved for all time

dVΩ
dt

= 0, ⇒ VΩ(t) = VΩ(0). (C 3)

That is the volume VΩ(t) in any fixed material region Ω at time t is equal to the initial
volume VΩ(0). In particular (C 3) holds for each triangular element T j , j ∈ M, and
states that the initial volume contained in the element remains constant for all time.

Appendix D. Earth pressure coefficients
The Earth pressure coefficients Kx and Ky are said to be active or passive depending

on whether the motion is dilatational or compressional. The following scheme has
been used to compute the state of the Earth pressure coefficients. For each triangle
T j(∈ Ne

i ) that neighbours point i, the positions of the local maximum and minimum
x- and y-coordinates of the triangles corners are computed:

xkminj
= min(xkαj , x

k
βj
, xkγj ), ykminj

= min(ykαj , y
k
βj
, ykγj ),

xkmaxj
= max(xkαj , x

k
βj
, xkγj ), ykmaxj

= max(ykαj , y
k
βj
, ykγj ).

}
(D 1)

These values are used to index the local velocity components at the corners of the
triangle T j and hence to compute whether the motion is dilatational or compressional.
Equations (2.5) and (2.6) are discretized as follows:

(Kx)
k
j =

{
Kxact u(xkmaxj

)− u(xkminj
) > 0

Kxpas u(xkmaxj
)− u(xkminj

) < 0,
(D 2)

(Ky)
k
j =


Kxact
yact

u(xkmaxj
)− u(xkminj

) > 0, v(ykmaxj
)− v(ykminj

) > 0

Kxact
ypas

u(xkmaxj
)− u(xkminj

) > 0, v(ykmaxj
)− v(ykminj

) < 0

K
xpas
yact u(xkmaxj

)− u(xkminj
) < 0, v(ykmaxj

)− v(ykminj
) > 0

K
xpas
ypas u(xkmaxj

)− u(xkminj
) < 0, v(ykmaxj

)− v(ykminj
) < 0.

(D 3)

The values of the Earth pressure coefficients (Kx)
k
j , (Ky)

k
j at the neighbouring triangles

T j ∈ Ne
i are computed by the algebraic relations (2.7), (2.8). A volume-averaging

procedure over the neighbouring triangles is then used to approximate the Earth
pressure coefficients at a point

(Kx)
k
i =

∑
j∈Ne

i
(Kx)

k
jV

0
j∑

j∈Ne
i
V 0
j

, (Ky)
k
i =

∑
j∈Ne

i
(Ky)

k
jV

0
j∑

j∈Ne
i
V 0
j

. (D 4)

This gives larger elements more weight in determining the value of the Earth pressure
coefficient.

Appendix E. Free-surface gradients
The free-surface gradients (∂s/∂x)ki , (∂s/∂y)ki at each point i ∈ L must be computed

in order to calculate the thickness gradients in (4.6) and (4.7). A volume-averaging
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φj

Figure 15. The avalanche free surface is approximated by triangular plane elements between each
grid cell. The angle φj is used as a weighting factor to calculate the average free surface gradient at
a grid point.

procedure similar to that used in computing the average Earth pressure coefficients
is used to construct the thickness hki at a point from the thicknesses hkj at the
neighbouring elements j ∈ Ne

i :

hki =

∑
j∈Ne

i
hkjV

0
j∑

j∈Ne
i
V 0
j

. (E 1)

It follows for the free surface at a point that

ski = hki + b(xki , y
k
i ). (E 2)

The free-surface gradients (∂s/∂x)kj , (∂s/∂y)kj at an element j are then constructed by
calculating the slope of a plane passing through its corners pαj , pβj , pγj . This implies(

∂s

∂x

)k
j

=
sαj (y

k
βj
− ykγj ) + sβj (y

k
γj
− ykαj ) + sγj (y

k
αj
− ykβj )

xαj (y
k
βj
− ykγj ) + xβj (y

k
γj
− ykαj ) + xγj (y

k
αj
− ykβj )

, (E 3)

(
∂s

∂y

)k
j

=
sαj (x

k
βj
− xkγj ) + sβj (x

k
γj
− xkαj ) + sγj (x

k
αj
− xkβj )

yαj (x
k
βj
− xkγj ) + yβj (x

k
γj
− xkαj ) + yγj (x

k
αj
− xkβj )

. (E 4)

These free-surface gradients then have to be averaged again to obtain (∂s/∂x)ki ,
(∂s/∂y)ki defined at each point i ∈ L. That is

(∂s/∂x)ki =

∑
j∈Ne

i
(∂s/∂x)kjWj∑
j∈Ne

i
Wj

, (∂s/∂y)ki =

∑
j∈Ne

i
(∂s/∂y)kjWj∑
j∈Ne

i
Wj

, (E 5)

where Wj = |φj | is an angle weighting factor. The angle φj is the angle that the
free-surface triangle, j, makes at the point pi. This is shown in figure 15. Assuming
the other vertices of the triangle are pφ, pχ ∈ Cj the weighting factor is

Wj = | cos−1(a · b/(|a| |b|))|, (E 6)

where a = (xφ − xi, yφ − yi, sφ − si) and b = (xχ − xi, yχ − yi, sχ − si). This method
enhances the stability of the numerical algorithm.

Appendix F. Artificial viscosity
Although the Savage–Hutter equations (2.1)–(2.3) appear relatively simple they

have proved particularly difficult to integrate numerically. Even in the one-dimensional
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s3

p1

pm

s1

s4

s2

Figure 16. Construction of the intersection points in the interior of the avalanche domain.

Lagrangian method developed by Savage & Hutter (1989), some additional artificial
numerical diffusion was necessary. This is because shocks can occur when there is
rapid convergence of the granular material, which the numerical method cannot
handle. Artificial viscosity terms Ψx = µx∂

2u/∂x2 and Ψy = µy∂
2v/∂y2 are therefore

added to the right-hand sides of the momentum balance equations (2.2) and (2.3)
to diffuse the sharp gradients in thickness and velocity that develop. Two different
viscosities µx and µy are used in the x- and y-directions. For the simulations presented
in this paper the diffusion terms are only activated after the tenth non-dimensional
time unit as they are not needed to maintain stability when the avalanche is diverging.

To compute the x-derivatives at interior points two intersection points s1 =
(x(s1)

k
i , y

k
i ) and s2 = (x(s2)

k
i , y

k
i ) are first constructed. These both lie on the line

y = yki but on opposite sides of x = xki . The components x(s1) and x(s2) are defined
by the intersection of y = yki with the convex edge formed by the set of points Np

i .
More precisely, for the intersection point s1 a search is performed to determine the
points pl , pm ∈ Np

i that lie immediately above and below the line y = yki . A straight
line is then drawn between the two points and the x-component at the intersection
with the line y = yki is calculated by

x(s1) =
xl − xm
yl − ym (yi − yl) + xl. (F 1)

This is illustrated in figure 16. A linear interpolation is then used to approximate the
downslope and cross-slope velocity components at the intersection point:

u(s1) =
|s1 − pl |
|pl − pm| (ul − um) + ul, v(s1) =

|s1 − pl |
|pl − pm| (vl − vm) + vl , (F 2)

where (ul, vl) and (um, vm) are the velocities at pl and pm, respectively. An analogous
method is used to find the other intersection point x(s2) 6= x(s1) and the velocity v(s2).
In the y-direction two new intersection points s3, s4 and their velocities are defined in
a similar manner except that this time they lie on the line x = xki .

At the boundary of the avalanche the edge points are not surrounded by a complete
six-element net. Instead there may be either three neighbouring grid points (and two
elements) or four neighbouring points (and three elements) depending on position.
The construction of the intersection points at the edge is not possible, as at least
one of these points will lie outside the avalanche domain. For this reason virtual grid
points are defined outside the avalanche domain as shown in figure 17. These virtual
grid points have no dynamics of their own and act merely as a means of constructing
the intersection points and thereby the finite difference approximations at the edge of
the domain. The virtual grid points for edge point pi are constructed by interpolating
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s3

s1

s4

s2

s3

s1

s4

s2

(a) (b)

Figure 17. Construction of the intersection points at the edge of the avalanche with (a) three
neighbouring elements and (b) two neighbouring elements. The dashed lines indicate the position
of the virtual grid edges.

the position of an internal neighbouring point pn to a position p̂n outside the domain

(x̂n)
k
i = 2xki − xkn, (ŷn)

k
i = 2yki − ykn. (F 3)

When there are three neighbouring grid points only one of these is internal and there-
fore only one virtual grid point is constructed, and when there are four neighbouring
points two of these are internal and therefore two virtual points are constructed. This
is shown in figure 17. The velocity of the virtual points is then computed by a Taylor
expansion about point pn. The intersection points at the edge and their velocities can
then be constructed in the same manner as for the internal points.

Having constructed the position and velocity of the intersection points for all points
within the avalanche grid net, the finite difference approximations to the diffusion
terms are

(Ψx)
k
i = µx((ax)

k
i u(s1)

k−1/2
i + (bx)

k
i u
k−1/2
i + (cx)

k
i u(s2)

k−1/2
i ),

(Ψy)
k
i = µy((ay)

k
i v(s3)

k−1/2
i + (by)

k
i v
k−1/2
i + (cy)

k
i v(s4)

k−1/2
i ),

}
(F 4)

with coefficients

(ax)
k
i =

−2

(xki − x(s1)
k
i )(x(s1)

k
i − x(s2)

k
i )
, (ay)

k
i =

−2

(yki − y(s3)
k
i )(y(s3)

k
i − y(s4)

k
i )
,

(bx)
k
i =

2

(xki − x(s1)
k
i )(x

k
i − x(s2)

k
i )
, (by)

k
i =

2

(yki − y(s3)
k
i )(y

k
i − y(s4)

k
i )
,

(cx)
k
i =

2

(xki − x(s2)
k
i )(x(s1)

k
i − x(s2)

k
i )
, (cy)

k
i =

2

(yki − y(s4)
k
i )(y(s3)

k
i − y(s4)

k
i )
.


(F 5)

This completes the finite difference approximation of (4.6) and (4.7).
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